Главная Регистрация Вход
Приветствую Вас Гость!

Мой сайт
Главная » 2014 » Февраль » 13 » Микрофлора крупы :: Микрофлора круп
08:10

Микрофлора крупы :: Микрофлора круп





Государственное образовательное учреждение высшего профессионального образования

Российский государственный торгово-экономический университет

Омский институт (филиал)

Контрольная работа по предмету: «Основы микробиологии»

Вариант № 2

Омск 2008

Содержание

Введение……………………………………………………………………………...3

Дрожжи. Строение, размножение. Основные представители и хозяйственное значение…………………………………………....................................................... 5

Микрофлора крупы………………………………………………………………....13

Заключение………………………………………………………………………….20

Используемая литература………………………………………………………….21

Введение

В данной работе мы рассмотрим такие вопросы, как дрожжи и основные вопросы о них. А так же рассмотрим микрофлору крупы и основное воздействие на состав зерна при различной обработке.

Дрожжи, вероятно, одни из наиболее древних «домашних организмов». Тысячи лет люди использовали их для ферментации и выпечки. Археологи нашли среди руин древнеегипетских городов жернова и пекарни, а также изображение пекарей и пивоваров. Предполагается, что пиво египтяне начали варить за 6000 лет до н. э., а к 1200 году до н. э. овладели технологией выпечки дрожжевого хлеба наряду с выпечкой пресного. Для начала сбраживания нового субстрата люди использовали остатки старого. В результате в различных хозяйствах столетиями происходила селекция дрожжей и сформировались новые физиологические расы, не встречающиеся в природе, многие из которых даже изначально были описаны как отдельные виды. Они являются такими же продуктами человеческой деятельности, как сорта культурных растений.

В 1680 году голландский натуралист Антони ван Левенгук впервые увидел дрожжи в оптический микроскоп, однако не распознал в них из-за отсутствия движения живых организмов. И лишь в 1857 году французский микробиолог Луи Пастер в работе «Mmoire sur la fermentation alcoholique» доказал, что спиртовое брожение — не просто химическая реакция, как считалось ранее, а биологический процесс, производимый дрожжами.

В 1881 году Эмиль Христиан Хансен, работник лаборатории датской компании Carlsberg, выделил чистую культуру дрожжей, а в 1883 году впервые использовал её для получения пива вместо нестабильных заквасок. В конце XIX века при его участии создаётся первая классификация дрожжей, в начале XX века появляются определители и коллекции дрожжевых культур. Во второй половине века наука о дрожжах (зимология) помимо практических вопросов начинает уделять внимание экологии дрожжей в природе, цитологии, генетике.

До середины XX века учёные наблюдали только половой цикл аскомицетных дрожжей и рассматривали их всех как обособленную таксономическую группу сумчатых грибов. Японскому микологу Исао Банно в 1969 году удалось индуцировать половой цикл размножения у Rhodotorula glutinis, которая является базидиомицетом. Современные молекулярно-биологические исследования показали, что дрожжи сформировались независимо среди аскомицетных и базидиомицетных грибов и представляют собой не единый таксон, а скорее жизненную форму.

24 апреля 1996 года года было объявлено, что Saccharomyces cerevisiae стал первым эукариотическим организмом, чей геном (12 млн пар оснований) был полностью секвенирован. Секвенирование заняло 7 лет и в нём принимали участие более 100 лабораторий. Следующим дрожжевым организмом и шестым эукариотом с полностью расшифрованным геномом в 2002 году стал Schizosaccharomyces pombe с 13,8 млн. пар оснований.

Микрофлора круп состоит в основном из микроорганизмов зерна. Уровень микробной обсемененности зерна имеет значительные различия в зависимости от условий выращивания, способа обработки, сроков и условий хранения.

Количество микроорганизмов зерна (пшеницы, проса, ячменя, риса, овса, гречки) от нескольких тысяч до миллионов клеток в 1 , однако, качественный состав микрофлоры довольно однообразен. Преобладающими микроорганизмами являются бактерии (до 80 % и более), спор плесневых грибов около 7% , дрожжей еще меньше. Бактериальная микрофлора представлена в основном травяной палочкой Erwinia herbicola. Это грамотрицательная неспоробразующая аэробная палочка, которая составляет постоянную микрофлору зерна. Встречаются также микрококки, молочнокислые бактерии, спорообразующие аэробные палочки, среди которых преобладают бациллы картофельно-сенной группы.

В грибной микрофлоре обнаруживаются главным образом Alternaria, Cladosporium, меньше содержится аспергилловых и пеницилловых грибов, имеются также дрожжи и актиномицеты.

Микрофлора различных круп по качественному составу близка к микрофлоре зерна, но количественно меньше. Большое влияние на объем микрофлоры оказывает предварительная обработка зерна (шелушение, очистка, шлифовка), а также технология производства крупы. Крупы, изготовленные из зерна, подвергнутого гидротермической обработке (пропаривание), содержит в 10-100 раз меньше микроорганизмов, чем из непропаренного.

При хранении круп в них снижается число бактерий, в основном за счет отмирания травяной палочки. В опытах по хранению различных круп при температуре 14-16С и относительной влажности воздуха 70-75% через год в них сохраняется 10-15% бактерий, преимущественно спорообразующих. Количество плесеней в тех же условиях хранения почти не изменяется. Если же крупа хранится при той же температуре, но при 80% влажности воздуха, то через 4-6 месяцев в ней значительно увеличивается число плесневых грибов, в основном пенициллов и аспергиллов. Особенно интенсивно плесени развиваются на крупе, изготовленной из пропаренного зерна. Накопление плесеней вызывает ухудшение качества круп, что связано со способностью плесеней разлагать белки, жиры, крахмал и сбраживать сахара с образованием кислот. Кроме того, в крупе могут накапливаться микотоксины, вызывающие отравления.

Хранить крупы следует в сухих отапливаемых помещениях с хорошей вентиляцией при температуре 15-18С и относительной влажности воздуха не выше 75%.

Дрожжи

Дрожжи — внетаксономическая группа одноклеточных грибов, утративших мицелиальное строение в связи с переходом к обитанию в жидких и полужидких, богатых органическими веществами субстратах. Объединяет около 1500 видов, относящихся к аскомицетам и базидиомицетам.

Границы группы очерчены нечётко: многие грибы, способные вегетативно размножаться в одноклеточной форме и идентифицируемые, поэтому как дрожжи, на других стадиях жизненного цикла образуют развитый мицелий, а в ряде случаев и макроскопические плодовые тела. Раньше такие грибы выделяли в особую группу дрожжеподобных, но сейчас их все обычно рассматривают вместе с дрожжами. Исследования 18S рРНК показали близкое родство с типичными дрожжами видов, способных к росту только в виде мицелия.

Размеры дрожжевых клеток обычно составляют 3—7 мкм в диаметре. Есть данные, что некоторые виды способны вырастать до 40 мкм[1].

Дрожжи имеют большое практическое значение, особенно пекарские или пивные дрожжи (Saccharomyces cerevisiae). Некоторые виды являются факультативными и условными патогенами. К настоящему времени полностью расшифрован геном дрожжей Saccharomyces cerevisiae (они стали первыми эукариотами, чей геном был полностью секвенирован) и Schizosaccharomyces pombe.

Различить дрожжи, принадлежащие к разным отделам грибов можно как по характеристикам их жизненного цикла, так и без его наблюдения по признакам аффинитета. К ним относится: синтез каротиноидов (встречается только у базидиомицетных дрожжей), тип убихинонов (с 5—7 изопреноидными остатками у аскомицетных и с 8—10 у базидиомицетных, хотя есть исключения), тип почкования, содержание ГЦ пар в ДНК (26—48 % у аскомицетных, 44—70 % у базидиомицетных), наличие уреазы (характерна за несколькими исключениями только базидиомицетным) и др.

Дрожжи являются хемоорганогетеротрофами и используют органические соединения, как для получения энергии, так и в качестве источника углерода. Им необходим кислород для дыхания, однако при его отсутствии многие виды способны получать энергию за счёт брожения с выделением спиртов (факультативные анаэробы). В отличие от бактерий, среди дрожжей нет облигатных анаэробов, гибнущих при наличии кислорода в среде. При пропускании воздуха через сбраживаемый субстрат дрожжи прекращают брожение и начинают дышать (поскольку этот процесс эффективнее), потребляя кислород и выделяя углекислый газ. Это ускоряет рост дрожжевых клеток (эффект Пастера). Однако даже при доступе кислорода в случае высокого содержания глюкозы в среде дрожжи начинают её сбраживать (эффект Кребтри).

Дрожжи достаточно требовательны к условиям питания. В анаэробных условиях дрожжи могут использовать в качестве источника энергии только углеводы, причём в основном гексозы и построенные из них олигосахариды. Некоторые виды (Pichia stipitis, Pachysolen tannophilus) усваивают и пентозы, например, ксилозу. Schwanniomyces occidentalis и Saccharomycopsis fibuliger способны сбраживать крахмал, Kluyveromyces fragilis — инулин. В аэробных условиях круг усваиваемых субстратов шире: помимо углеводов также жиры, углеводороды, ароматические и одноуглеродные соединения, спирты, органические кислоты. Гораздо больше видов способно использовать пентозы в аэробных условиях. Тем не менее, сложные соединения (лигнин, целлюлоза) для дрожжей недоступны.

Источниками азота для всех дрожжей могут быть соли аммония, примерно половина видов имеет нитратредуктазу и может усваивать нитраты. Пути усвоения мочевины различны у аскомицетовых и базидиомицетовых дрожжей. Аскомицетовые сначала карбоксилируют её, затем гидролизуют, базидиомицетовые — сразу гидролизуют уреазой.

Для практического применения важны продукты вторичного метаболизма дрожжей, выделяемые в малых количествах в среду: сивушные масла, ацетоин (ацетилметилкарбинол), диацетил, масляный альдегид, изоамиловый спирт, диметилсульфид и др. Именно от них зависят органолептические свойства полученных с помощью дрожжей продуктов.

Строение

Дрожжевые клетки имеют округлую или эллип­совидную форму с размером в поперечнике от 2,5 до 10 мкм и от 4,5 до 21 мкм в длину. На рис. 1 приведено графическое изображение среза дрож­жевой клетки. Клеточная стенка, клеточная мемб­рана, ядро, митохондрии, вакуоли – структуры клетки, видимые в световой микроскоп с сухим объективом при использовании специфических красителей.

Клеточная стенка представляет собой жесткую структуру толщиной 25 нм, составляет около 25% сухой массы клетки и состоит в основном из глю-кана, манана, хитина и белка. Организация клеточ­ной стенки недостаточно изучена, однако совре­менные теории отдают предпочтение модели трех­слойной структуры, согласно которой внутренний глюкановый слои отделен от внешнего мананового промежуточным слоем с повышенным содержани­ем белка.

Клеточная мембрана (плазмалемма) дрожжевой клетки под электронным микроскопом выглядит как трехслойная структура, тесно прилегающая к внут­ренней поверхности клеточной стенки, и состоит примерно из равного количества липидов и белков, а также небольшого количества углеводов. Клеточ­ная мембрана выполняет роль барьера проницаемо­сти вокруг содержимого клетки и контролирует транспорт растворенных веществ внутрь клетки и из нее.

В изучении ядра достигнуты лишь некоторые успехи, поскольку индивидуальные хромосомы очень малы и не выявляются в виде дискретных структур ни в световом, ни в электронном микро­скопах. Дрожжевые клетки имеют одно ядро раз­мером от 2 до 20 мкм. Ядерная мембрана остается неизменной на протяжении всего клеточного цик­ла. Под электронным микроскопом она выглядит как двойная мембрана, усеянная порами.

Митохондрии – самые большие из клеточных включений сферической или цилиндрической формы размером в поперечнике от 0,2 до 2 мкм и от 0,5 до 7 мкм в длину. Двухслойная оболочка имеет толщину около 20 нм. Количество митохон­дрий в клетке более или менее постоянно и харак­терно для данного вида микроорганизмов.

Оно меняется в зависимости от стадии развития клет­7и и функциональной активности от 500 до 2000 тт. Функции митохондрий связаны с переносом электронов, ионов, субстратов внутри клетки. По­мимо этого в митохондриях синтезируются веще­ства, аккумулирующие химическую энергию клетки.

Зрелые дрожжевые клетки содержат большую вакуоль. При образовании почки вакуоль, по всей вероятности, дробится на более мелкие ва­куоли, которые распределяются между материн­ской клеткой и почкой. В дальнейшем эти маленькие вакуоли снова сливаются, образуя по одной вакуоли в материнской и дочерней клет­ках. Функция вакуоли точно не установлена. В ней содержатся гидролитические ферменты, по­лифосфаты, липиды, ионы металлов и др. Ваку­7и7, возможно, выполняет функции резервуара для хранения питательных веществ и гидроли­тических ферментов.

Внутриклеточное содержимое дрожжевой клет­7и (за исключением ядра, митохондрий и вакуоли), как известно, называют цитоплазмой, состоящей из воды, липидов, углеводов, различных высокомолекулярных и низкомолекулярных соеди­нений, минеральных солей и др. Исследование клетки под электронным микроскопом показало сложную структуру цитоплазмы в виде гранул, функции и химические свойства которых достаточной мало не изучены. Цитоплазма играет важ­ную роль в биохимии клетки и находится в тесном взаимодействии с органеллами, которые она окру­жает.



Источник: works.doklad.ru
Просмотров: 153 | Добавил: hissadyshe | Рейтинг: 0.0/0
Всего комментариев: 0

Поиск

Календарь

«  Февраль 2014  »
ПнВтСрЧтПтСбВс
     12
3456789
10111213141516
17181920212223
2425262728

Мини-чат

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0
Среда
18.09.2019
21:40


Copyright MyCorp © 2019

Бесплатный конструктор сайтов - uCoz